bascule de visibilité Search & Display Options

Tout Sélectionner    Désélectionner
 |   | 
Détails
   print
  Enregistrement Liens
Auteur Provini, P.; Tobalske, B.W.; Crandell, K.E.; Abourachid, A. url  doi
openurl 
  Titre Transition from wing to leg forces during landing in birds Type Article scientifique
  Année (down) 2014 Publication The Journal of Experimental Biology Revue Abrégée J Exp Biol  
  Volume 217 Numéro Pt 15 Pages 2659-2666  
  Mots-Clés Diamond dove; Forelimb; Geopelia cuneata; Hindlimb; Locomotion; Piv; Particle image velocimetry; Taeniopygia guttata; Zebra finch  
  Résumé Transitions to and from the air are critical for aerial locomotion and likely shaped the evolution of flying animals. Research on take-off demonstrates that legs generate greater body accelerations compared with wings, and thereby contribute more to initial flight velocity. Here, we explored coordination between wings and legs in two species with different wingbeat styles, and quantified force production of these modules during the final phase of landing. We used the same birds that we had previously studied during take-off: zebra finch (Taeniopygia guttata, N=4) and diamond dove (Geopelia cuneata, N=3). We measured kinematics using high-speed video, aerodynamics using particle image velocimetry, and ground-reaction forces using a perch mounted on a force plate. In contrast with the first three wingbeats of take-off, the final four wingbeats during landing featured ~2 times greater force production. Thus, wings contribute proportionally more to changes in velocity during the last phase of landing compared with the initial phase of take-off. The two species touched down at the same velocity (~1 m s(-1)), but they exhibited significant differences in the timing of their final wingbeat relative to touchdown. The ratio of average wing force to peak leg force was greater in diamond doves than in zebra finches. Peak ground reaction forces during landing were ~50% of those during take-off, consistent with the birds being motivated to control landing. Likewise, estimations of mechanical energy flux for both species indicate that wings produce 3-10 times more mechanical work within the final wingbeats of flight compared with the kinetic energy of the body absorbed by legs during ground contact.  
  Adresse Museum National d'Histoire Naturelle, EGB, UMR 7179, 55 Rue Buffon, 75005 Paris, France  
  Auteur institutionnel Thèse  
  Editeur Lieu de Publication Éditeur  
  Langue English Langue du Résumé Titre Original  
  Éditeur de collection Titre de collection Titre de collection Abrégé  
  Volume de collection Numéro de collection Edition  
  ISSN 0022-0949 ISBN Médium  
  Région Expédition Conférence  
  Notes PMID:24855670 Approuvé pas de  
  Numéro d'Appel MNHN @ abourach @ collection 1290  
Lien permanent pour cet enregistrement
Tout Sélectionner    Désélectionner
 |   | 
Détails
   print

Save Citations:
Export Records: